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ABSTRACT

Often a link-state routing takes a form of the cost based scheme
which admits an arriving request on the minimum cost route if
this cost does not exceed the cost of the request, and rejects the
request otherwise.  Cost based strategies naturally arise as a
result of optimization of the network performance or

incorporating Quality of Service ( QoS ) requirements into the

admission and routing processes.  In the former case the
implied cost of the resources represents expected future
revenue losses due to insufficient resources for servicing future
requests.  In the latter case the cost of a route represents the

expected level of QoS , e.g., bandwidth, delay, packet loss,

etc., provided to the request carried on this route.  In both cases
due to the aggregation, statistical nature of the resource costs,
delays in disseminating signaling information, non-steady or
adversarial operational environment the cost of the resources
may not be known exactly.  Usually this uncertainty is modeled
by assuming that resource costs are random variables with
fixed probability distributions.  We propose to explicitly
recognize that the minimum cost route selection as an ill-posed
problem and to view randomized routing as a regularized
solution to this problem.  We consider a specific case of
regularization intended to guard against adversarial uncertainty,
i.e., worst case scenario, with respect to the resource costs lying
within known "confidence" intervals.  Assuming that the
network minimizes and the adversarial environment maximizes
the losses resulted from non-optimal admission and routing
decisions due to the uncertainty, we identify the optimal
admission and routing decisions with the Nash equilibrium
strategy in the corresponding game.  We explicitly identify this
strategy in a case of parallel, homogeneous structure.

Keywords: randomized routing, minimum cost routing,
uncertainty, regularization, games, Nash equilibrium.

1. INTRODUCTION

Often a link-state routing takes a form of the cost based scheme
which admits an arriving request on the minimum cost route if
this cost does not exceed the cost of the request, and rejects the
request otherwise.  Cost based strategies naturally arise as a
result of optimization of the network performance [1] or
incorporating Quality of Service ( QoS ) requirements into the

admission and routing processes [2].  In the former case the
implied cost of the resources represents expected future
revenue losses due to insufficient resources for servicing future
requests.  In the latter case the cost of a route represents the
expected level of QoS , e.g., bandwidth, delay, packet loss,

etc., provided to the request carried on this route.  In both cases
due to the aggregation, statistical nature of the resource costs,

delays in disseminating signaling information, non-steady or
adversarial operational environment the cost of the resources
may not be known exactly.
    This uncertainty does not affect the routing decisions if the
minimum cost route can be identified with required degree of
confidence.  The problem, however, is that due to the very
nature of the minimum cost routing, the minimum cost route
typically cannot be identified with a reasonable degree of
confidence.  Indeed, except for some anomalies, the cost of a
link is an increasing function of the link load.  Minimum cost
routing increases the load carried on a minimum cost route
until admission control takes over, or at least two routes have
the same cost.  This positive feedback attempts to equalize the
costs of several routes with each other and with the cost of a
request, and may cause oscillations in the optimal route
selection, which are perceived as route flapping phenomenon
when the frequency of optimal route updates significantly
increases.
     Usually, uncertainty in the resource costs is modeled by
assuming that the resource costs are random variables with
fixed probability distributions, which may or may not be
known to the network [2].  From decision theoretic perspective
this approach lies within Bayesian framework [3].  However,
even when the forms of the probability distributions can be
reliably identified, e.g., exponential distributions for the delays,
the parameters of these distributions, e.g., average delays,
remain to be subject to uncertainty within the corresponding
confidence regions, leaving the problems of sensitivity and
instability unresolved. Empirical results suggest that
performance/robustness curve of the routing algorithm can be
often improved by allowing randomization of the routing
decisions [4].  However, Bayesian framework resulted in
deterministic optimal strategies does not allow one to support
and quantify this claim.
    This paper proposes to tackle the problem of uncertainty in
the resource costs by viewing route cost minimization as an ill-
posed problem [5].  The standard technique for solving ill-
posed problem is regularization, i.e., penalizing solution for
sensitivity to the variable contaminated by noise.  We propose
to view randomized routing as a regularized solution to the
route cost minimizatio problem, where regularization is based
on the "confidence region" Cc ∈  rather than point estimates

cc ~≈  for the vector )( lcc =  of the link costs lc .  In a

situation when link costs lie within certain confidence region,
the set of "acceptable" routes includes all feasible routes, which
may be optimal, given the constraints imposed by the
confidence interval.  We propose to regularize solution to the
routing optimization problem by randomizing routing selection
within the optimal set of routes.  Different regularization
techniques lead to different randomization among acceptable
routes.  This framework can be extended to a situation of



random link costs with probability distributions containing
uncertain parameters.
    We consider a specific case of regularization intended to
guard against adversarial uncertainty, i.e., the worst case
scenario, with respect to the resource costs lying within known
confidence regions.  Assuming that the network minimizes and
the adversarial environment maximizes the losses resulted from
non-optimal admission and routing decisions due to the
uncertainty, we identify the optimal routing with Nash
equilibrium strategy in the corresponding game.  We explicitly
identify the corresponding Nash equilibrium routing strategy in
a case of parallel, homogeneous structure under various
scenarios for the adversarial environment. The game theoretic
framework approach to network management under uncertainty
has been proposed in [6] and then applied to cost based
admission control for a case of a single feasible route in [7].
     Various assumptions on the capabilities of the adversarial
environment to manipulate the link costs produce different
game models.  For example, in a case of extremely omnipotent
environment, capable of synchronized selection of the link cost
for all links, the adequate game model includes two players: the
network and the environment.  In a case when link costs are
selected independently for different links, the adequate game
model is a non-cooperative game of L+1  players where the
number of links in the network is L .  In this game model one
player representing the network is trying to minimize losses
and other L  players representing network links are trying to
maximize losses.  Various intermediate scenarios with respect
to synchronization of link costs are possible.
    Optimization algorithms, assuming exact knowledge of the
link states, solve the problem of routing instability by splitting
traffic with the same origin-destination among routes of the
same cost.  These algorithms are based on rerouting of the
infinitesimal portions of the load, and take form of iterative
process [8] or discontinuous differential equations describing
sliding modes [9].  The obvious difficulty of applying these
algorithms is that their stability is guaranteed only
asymptotically as load granularity decreases.  Even more
important is that the optimal traffic split seems to be very
sensitive to the unavoidable uncertainties in the fluctuations in
the rates of incoming traffic.  Randomization of the routing
decisions can be viewed as an attempt to obtain stable traffic
split.
    The paper is organized as follows.  Section 2 describes a
minimum cost routing and its randomized version.  Section 3
characterizes losses and risks associated with the admission and
routing decisions under uncertainty.  Section 4 describes game
theoretic framework for risk management.  Section 5 explicitly
identifies the optimal admission strategy by solving the
corresponding game in a case of parallel homogeneous
structure.  Finally, conclusion briefly summarizes results.

2.  ROUTING

Minimum Cost Routing: Deterministic Link Costs
In a link-state model a network topology database keeps state
information about nodes and links in the network

Xxx l ∈= )(  where lx  is the vector characterizing the  state of a

link l  and adjacent to this link nodes.  Often the result of selecting

route r  from the set of feasible routes },...,{ 1 KrrF =  can be

characterized by some utility function )( rr xuu =  where vector

):( rlxx lr ∈=  characterizes the state of links rl ∈ .

Assuming that rejection of a request has utility zero, the definition of

the utility function can be extended as follows: 0=∅u , where

∅=r  means that the request is rejected.  Given the network
state x , the optimal routing strategy chooses control action that
yields the maximum utility:

                              r
Fr

opt ur
},{

maxarg
∅∈

=                                            (1)

Often link state routing takes form of the cost based scheme with utility
function
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where the cost of an arriving request is w , and the cost of a

route is rc .  Usually the route cost is assumed to be additive:

                               ∑= ∈rl lr cc                                           (3)

where the cost of a link l  is lc .  For example, network

performance oriented minimum cost schemes weight the revenue
brought by the arriving request w  against the expected future revenue

losses rc  due to insufficient resources for servicing future

requests resulted from tying up certain bandwidth on links rl ∈  [1].   

In this case lc  is the implied cost of a link l .  The utility (2) is

the surplus value i.e., the difference between the revenue brought
by the admitted request w  and the implied costs of the

occupied resources rc .  Maximization (1) of the utility function (2)

results in the following admission and routing strategy
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where the route *r  of minimum cost *c  is determined by
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    The joint problem of rate control and routing based on
resource pricing [10] can be also presented in form (1)-(2).
Assuming that the user s  utility of transmission at rate y  is

)(yU s , and the incremental price of occupying resources on

route r  is rc , a reasonable user s  is expected to choose his

transmission rate y  and route Fr ∈  by solving the

following individual optimization problem [10]:
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Optimization problem (7) can be solved as a two step
procedure with first, finding minimum cost route (1)-(2), and,

then, determining the optimal transmission rate 
opt
syy =  by

solving equation *cdyUd s = .

Minimum Cost Routing: Random Link Costs

Assuming that the state of the network Xxx l ∈= )(  is a

random variable with given probability distribution )(xP , the

optimal routing decision yields the maximum average utility [2]:
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For the cost based scheme (2), the average utility is
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    In a case of additive cost function (5), the optimal route selection (8)
is based on the average link costs.  In a case of QoS  routing [2]

the utility function is
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where w  characterizes the minimum level of the QoS

acceptable for the arriving request, and rc  represents the level

of QoS , e.g., bandwidth, delay, packet loss, etc., provided to

the request carried on this route.  Typically nonlinear,
increasing and concave function )(ξϕ  represents the user

utility of receiving QoS  ξ+w , while the required level of

QoS  is w  [2].  Function )(ξϕ  allows one to describe the

user "soft" QoS  requirements. A particular case of user

"hard" QoS  requirements corresponds to the following

specific selection of the function )(ξϕ :
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with some positive constant 0>ω .  Note computational
difficulties associated with solving optimization problem (8) in
a case of non-linear function )(ξϕ
    The following parameterized family of functions provides
convenient approximation for the utility function )(ξϕ :

                       ( )γξωγωξϕ −−= e1),(                           (12)

where 0>ω  and 0>γ  are some parameters.  Function (12)

is monotonously increasing, concave in ξ  for any
2),0(),( ∞∈γω .  When ∞→ω , 0→γ ,

const== βωγ , family (12) yields a linear utility function

ξβγωξϕ =),( .  When const=ω , ∞→γ , family

(12) yields utility function (11).

Randomized Routing
Consider a situation when route },{ Fr ∅∈  is selected with

probability rα , where the admission probability is

∅−= αα 1 , and

              1=∑ rα , 0≥rα , },{ Fr ∅∈∀                    (13)
The expected utility of this randomized routing decision is

                   ∑ ∈
=

Fr rr uEu ][)( αα                              (14)

where the average utility of selecting route Fr ∈  is ][ ruE .

Maximization of the expected utility (14) with respect to the

distribution )( rαα =
                             ),(max cu α

α
                                          (15)

subject to constraints (13) yields degenerative solution

}1,0{∈rα  which describes the optimal deterministic routing

decision based on maximization of the average utility (8).  In a

case of deterministic route costs )( rcc = , this procedure

results in routing (1).  Optimal solution to (15) is a
discontinuous function of vector c  on the hyper planes where
two or more routing decisions are optimal.  Since in practical

applications vector c  is contaminated by some noise,
optimization problems (8) as well as (15) are ill-posed.
    The standard technique for solving an ill-posed problem is
regularization, i.e., penalizing solution α  for sensitivity to
contaminated variable c [5].  In a case of a minimum cost
routing (10) it is natural to assume that the vector of link costs

)( lcc =  can be more reliably represented by the "confidence

region" Cc ∈  than the point estimate cc ~≈ .  Define the set

of "acceptable" routing decisions },{* FFr ∅⊆∈  to be the

set of all feasible routing decisions that may be optimal, given
the confidence regions for the link costs.  Reasonable
randomized routing strategies assign positive probabilities to an
acceptable routing decision, and zero probability to an
unacceptable routing decision:

                            0>rα   if  *Fr ∈                                  (16)

                            0=rα   if  *Fr ∉                                  (17)

    This regularization framework can be easily extended to a
case of random link costs by assuming that the form of the
distribution for the vector c  is known, but the parameters, e.g.,
moments, are subject to uncertainty within known "confidence
regions".  In the rest of the paper we consider a game theoretic
framework which leads to a specific selection of probabilities

rα  satisfying conditions (16)-(17).

3.  LOSSES AND RISKS

Losses
The losses resulted from non-optimal network admission and

routing decisions due to the uncertain link costs )( lcc =  can

be quantified by the following loss function [6]-[7]:
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Combining (18) with (10) we obtain the following expression
for the loss function:





∅=
∅≠

−
−−−

=
r

r

ifcw

ifcwcw
rcL r

)}(,0max{

)()}(,0max{
),(

*

*

ϕ
ϕϕ

 (19)

where *c  is given by (5).  Function ),( rxL  possesses the

following properties:

        0),( =rcL  for  optrr =  and Cc ∈∀

        0),( ≥rcL  for },{),( krCrc ∅⊗∈∀
for any set of the vectors of link costs  Cc ∈∀ .  Thus,

            0),(minmax
),(max ≡=

∅∈∈
rcLL

FrCc

(

            0),(maxmin
),(min ≥=

∈∅∈
rcLL

CcFr

)

Network decision to admit a request on some feasible route
Fr ∈  exposes the network to potential losses

),()( rcLcL rtnadm +  due to non-optimality of these

decisions.  Network decision to reject a request exposes the

network to potential losses )(cLrej
 due to non-optimality of

the rejection decision.  Loss (19) can be expressed as follows:
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Rejection, admission and routing losses in (20) are uniquely
identified as follows:



              )}(,0max{)( *cwwcLrej −= ϕ                      (21)

              )}(,0min{)( *cwwcLadm −−= ϕ                  (22)
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Expressions (21)-(23) follow from (19)-(20) and the fact that

0),( * ≡rcLrtn
, i.e., route selection (5) does not cause any

loss.  Since

    )()()(),( r
admrejrtn cwcLcLrcL −−−= ϕ ,

the total loss (19) can be also rewritten as follows:
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    It is easy to see that the rejection loss (21) is monotonously
decreasing function and admission risk (22) is monotonously
increasing function with respect to the partial ordering of the

vector of route costs ):( Frcc r ∈= .  Also note that

   0)( =wcLadm
 and 0)( >wcLrej

 if wc <*

   0)( >wcLadm
 and 0)( =wcLrej

 if wc >*

Routing risk is invariant to transformation acc rr +→ :

),(),( wracLwrcL rtnrtn += .  In a case of separable

uncertainty in the link costs

                           [ ]lll ccc
)(

,∈                                              (24)

it is natural to introduce binary variables { }1,0∈lδ  such that

               lllll ccc
)( δδ +−= )1(                                       (25)

and consider the following binary loss function of the binary

vector )( lδδ = :

          
lllll cccrcLrS )( δδδ +−== )1(),(),(                            (26)

Substituting (25) into the right-hand side of (21)-(23) one
easily obtains the binary rejection, admission, and routing loss
functions.

Risks

Consider a case when the costs of links lc  are mutually jointly

independent random variables with probability distributions

)( ll cp θ , which depend on some parameters ll Θ∈θ :

                   ∏ ∈= Ll lll cpcP )()( θθ                             (27)

where )( lcc = , )( lθθ = .  Averaging loss function (19)

over probability distribution (27), we obtain the following risk
function, which characterizes the risks resulted from non-
optimal network admission and routing decisions due to the

uncertain parameters ll Θ∈θ :

      [ ] ∫== )(),(),(),( θθ dcPrcLrcLErR P      (28)

Using (20)-(23) it is possible to separate total risk function (28)
into rejection, admission, and routing risk functions.  Note that
for general topology network and arbitrary distribution (27)
evaluation of the risk functions is a difficult task.  Consider a
particular case of parallel structure when different routes do not
overlap, and link costs distributed exponentially.  In this case

the cost of a route and the minimum cost of a feasible route are
also distributed exponentially:

                ( ) ( )rrr ccccp −−= exp1

where )(θrr cc =  is the average cost of a route r , and

                  ( ) ( )** exp1 ccccp −−=

where the average cost of the minimum cost route *c  is

determined by the following equation: ∑= )1(1 * rcc ,

Fr ∈ .  It is easy to verify that in this case the rejection,
admission and routing risk functions take the following forms:
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In a case of utility function (12), these risk functions can be
calculated explicitly:
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and in a case of linear utility function xx =)(ϕ  these risk

functions take the following simple forms:

                  ( )*1*
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Note that if uncertainty is separable with respect to parameters

[ ]lll θθθ
)(

,∈ , it is useful to consider the binary risk function

analogous to binary loss function (26).

4.  GAME THEORETIC FRAMEWORK

Depending on the ability of the adversarial environment to
coordinate selections of the link costs for different links,
various scenarios for uncertainty are possible.  We consider
two extreme cases of completely centralized and completely
decentralized adversarial environment.  Due to space
constraints we only consider a case of deterministic, but
uncertain link costs (24).  It can be shown that due to concavity
of function ϕ  the optimal strategy for the adversarial

environment assigns non-zero probabilities only to low and

upper boundaries ll cc
(=  and ll cc

)=  of the feasible

intervals [ ]lll ccc
)(

,∈ .  This allows us to deal only with

binary loss function (26).

Centralized Adversarial Environment



Consider a zero-sum game with two players, where player )(r
represents the network, and player )(c  represents the

adversarial environment [11].  The set of feasible strategies for
the network is },{ Rr ∅∈  and the set of feasible strategies

for the environment is Cc ∈ .  The matrix of payoffs made by

the network to the environment ),( wrcL  is given by (10).

According to this game theoretic framework, the optimal
network strategy },{ Rr ∅∈  represents the admission and

routing strategy guarding against the worst case scenario with
respect to the route costs Cc∈ .  The value of the game

( )RCwVV ,=  represents the expected performance loss

due to the admission and routing decisions },{ Rr ∅∈  for a

single request under incomplete information on the implied
costs of the resources Cc ∈  selected by adversarial
environment.  In a particular case when the payoff function

),( wrcL  has a saddle point, i.e., 0max
min =L , the

environment and the network have pure optimal strategies and
the value of the game is 0=V .  In a case when the payoff

function ),( wrcL  does not have a saddle point, i.e.,

0max
min >L , the environment and the network have mixed

optimal strategies which are probability distributions on
Cc ∈  and },{ Rr ∅∈  respectively, and the value of the

game is 0>V .
    Note, that according to the centralized scenario the
environment is free to assign non-zero probabilities to all

possible 
L2  combinations of binary variables }1,0{∈lδ ,

i.e.,

                      
L

l Rl }1,0{):( ∈∈δ                                   (29)

Decentralized Adversarial Environment
In the "decentralized" scenario the environment is capable of

random selection of each binary variable }1,0{∈lδ , but

selections for different links are independent from each other:
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This scenario can be modeled as a non-cooperative game of

1+K  players [11]. Player )(r  with a set of feasible

strategies },{ Rr ∅∈  and utility function ),( wrcL−

represents the network.  A player )( lδ  with a set of feasible

strategies }1,0{∈lδ  and utility function ),( wrcL

represents a player selecting the cost of the link l .  The

network makes admission and routing decisions },{ Rr ∅∈

with probabilities 0≥rα , 1=∑ rα , where the admission

probability is

                                  ∑
∈

Σ =
Rr

rαα                                     (32)

and the rejection probability is Σ∅ −= αα 1 .  A player

)( lδ  randomly selects the binary variable lδ  with
probabilities (31).   Selections by all players are independent
from each other, i.e., (30) holds.  This selection results in the
average loss
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The non-cooperative (Nash) equilibrium is determined by
solution to the following optimization problem [11]:

          ),(maxmin),( ** wSwSV αβαβ
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subject to constraints

            1=∑ rα , 0≥rα , },{ Rr ∅∈                         (35)

                               10 ≤≤ lβ , l∀                                   (36)

According to this game theoretic framework, the optimal

network strategy selectas route Rr ∈  with probability 
*
rα .

The optimal admission probability is ∑=Σ
**
rαα , Rr ∈ .

The optimal average loss due to uncertainty is represented by
(34).

5.   SOLUTION FOR A SYMMETRIC CASE

In this section we explicitly identify the optimal network
strategies by solving the corresponding games in a case of
parallel homogeneous structure when costs of all feasible
routes lie within the same confidence interval:

                                   ],[ cccr
)(∈                                        (37)

In this case the network has two pure admission strategies: to
accept or reject an arriving request. Our goal is to find the

optimal admission probability 
*
Σα .  Once admitted, the request

is carried on a route r  selected equiprobably from the set of

K feasible routes: Kr
**
Σ= αα , Fr ∈ .

Centralized Adversarial Environment
Since a case of a single feasible route 1=K  is covered in [7],
in this and next subsections we assume that 2≥K .  We
consider 1+K  pure strategies for the malicious environment.

Strategy ks , Kk ,..,0=  assigns ccr

)=  for a set of k

feasible routes },..,:{ 1 ki iiirr =∈ , randomly, with equal

probabilities selected from },..,{ 1 KrrF =  and assigns

ccr

(=  for routes },..,:{\ 1 ki iiirFr =∈ .  The pay-off

matrix (19) takes the form of the following 2)1( ×+K

matrix ( ) 1,
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K

jkkjLL
=

= :

                        
10: kkk L

accept

L

reject

s
 

where the risk associated with rejection is
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the risk associated with admission is
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and the expected utility of servicing a request of cost w , given

the environment strategy ks , is
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A 2)1( ×+K  game can be solved explicitly [11].  It is easy to

verify that this game always has a saddle point if 2≥K .  The
optimal admission probability is
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where 
*ww =  is the unique solution to the following

equation:

            0)()1()( =−−+− cwKcw
)( ϕϕ                 (38)

The optimal strategy for the environment is *k

opt ss =  where
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For utility function (12) equation (38) can be solved explicitly:
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In a particular case of a linear utility function ξξϕ ≡)(
equation (38) yields:
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Decentralized Adversarial Environment
In a case of question the average loss (24) takes the following
form:
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where ββ =r ,  Rr ∈∀ .  It can be shown that the solution
to the optimization problem (34)-(36) is as follows.  The
optimal admission probability is
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and the optimal strategy for the environment is
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where 
*ww =  is the unique solution to the following

equation:
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For utility function (12) equation (39) can be solved explicitly:
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In a particular case of a linear utility function ξξϕ ≡)(
equation (39) yields:
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6.  CONCLUSIONS

This paper proposes a framework for performance evaluation
and optimization of randomized routing.  The framework is
based on interpreting randomized routing as a regularized
solution to the route cost minimization problem.  Special
attention is paid to the game theoretic framework for the
regularization, intended to guard against the worst case
scenario with respect to uncertain parameters lying within
known "confidence" regions.  According to this game-theoretic
framework the optimal network strategy is identified with the
Nash equilibrium in the corresponding game.  The paper
explicitly identifies the optimal strategy in a case of parallel,
homogeneous structure under various assumptions on the
ability of adversarial environment to manipulate the link costs.
Future efforts should be directed towards developing
computationally feasible solutions for the corresponding games
for more realistic topologies.
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